3.1.67 \(\int \frac {1}{\sqrt {a+c x^2} (d+e x+f x^2)} \, dx\) [67]

3.1.67.1 Optimal result
3.1.67.2 Mathematica [C] (verified)
3.1.67.3 Rubi [A] (verified)
3.1.67.4 Maple [B] (verified)
3.1.67.5 Fricas [B] (verification not implemented)
3.1.67.6 Sympy [F]
3.1.67.7 Maxima [F(-2)]
3.1.67.8 Giac [F(-1)]
3.1.67.9 Mupad [F(-1)]

3.1.67.1 Optimal result

Integrand size = 24, antiderivative size = 266 \[ \int \frac {1}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=-\frac {\sqrt {2} f \text {arctanh}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}+\frac {\sqrt {2} f \text {arctanh}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}} \]

output
-f*arctanh(1/2*(2*a*f-c*x*(e-(-4*d*f+e^2)^(1/2)))*2^(1/2)/(c*x^2+a)^(1/2)/ 
(2*a*f^2+c*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/2))*2^(1/2)/(-4*d*f+e^2)^( 
1/2)/(2*a*f^2+c*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/2)+f*arctanh(1/2*(2*a 
*f-c*x*(e+(-4*d*f+e^2)^(1/2)))*2^(1/2)/(c*x^2+a)^(1/2)/(2*a*f^2+c*(e^2-2*d 
*f+e*(-4*d*f+e^2)^(1/2)))^(1/2))*2^(1/2)/(-4*d*f+e^2)^(1/2)/(2*a*f^2+c*(e^ 
2-2*d*f+e*(-4*d*f+e^2)^(1/2)))^(1/2)
 
3.1.67.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.28 (sec) , antiderivative size = 131, normalized size of antiderivative = 0.49 \[ \int \frac {1}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=-2 \sqrt {c} \text {RootSum}\left [a^2 f+2 a \sqrt {c} e \text {$\#$1}+4 c d \text {$\#$1}^2-2 a f \text {$\#$1}^2-2 \sqrt {c} e \text {$\#$1}^3+f \text {$\#$1}^4\&,\frac {\log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}}{a \sqrt {c} e+4 c d \text {$\#$1}-2 a f \text {$\#$1}-3 \sqrt {c} e \text {$\#$1}^2+2 f \text {$\#$1}^3}\&\right ] \]

input
Integrate[1/(Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]
 
output
-2*Sqrt[c]*RootSum[a^2*f + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 - 2*a*f*#1^2 - 2* 
Sqrt[c]*e*#1^3 + f*#1^4 & , (Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1)/ 
(a*Sqrt[c]*e + 4*c*d*#1 - 2*a*f*#1 - 3*Sqrt[c]*e*#1^2 + 2*f*#1^3) & ]
 
3.1.67.3 Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 266, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {1315, 488, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx\)

\(\Big \downarrow \) 1315

\(\displaystyle \frac {2 f \int \frac {1}{\left (e+2 f x-\sqrt {e^2-4 d f}\right ) \sqrt {c x^2+a}}dx}{\sqrt {e^2-4 d f}}-\frac {2 f \int \frac {1}{\left (e+2 f x+\sqrt {e^2-4 d f}\right ) \sqrt {c x^2+a}}dx}{\sqrt {e^2-4 d f}}\)

\(\Big \downarrow \) 488

\(\displaystyle \frac {2 f \int \frac {1}{4 a f^2+c \left (e+\sqrt {e^2-4 d f}\right )^2-\frac {\left (2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x\right )^2}{c x^2+a}}d\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {c x^2+a}}}{\sqrt {e^2-4 d f}}-\frac {2 f \int \frac {1}{4 a f^2+c \left (e-\sqrt {e^2-4 d f}\right )^2-\frac {\left (2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x\right )^2}{c x^2+a}}d\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {c x^2+a}}}{\sqrt {e^2-4 d f}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\sqrt {2} f \text {arctanh}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {\sqrt {2} f \text {arctanh}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\)

input
Int[1/(Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]
 
output
-((Sqrt[2]*f*ArcTanh[(2*a*f - c*(e - Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2 
*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[e 
^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])])) + (Sqr 
t[2]*f*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 
 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[e^2 - 4 
*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])])
 

3.1.67.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 488
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> -Subst[ 
Int[1/(b*c^2 + a*d^2 - x^2), x], x, (a*d - b*c*x)/Sqrt[a + b*x^2]] /; FreeQ 
[{a, b, c, d}, x]
 

rule 1315
Int[1/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f_.)*(x_)^2]), x_Sym 
bol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[2*(c/q)   Int[1/((b - q + 2*c*x 
)*Sqrt[d + f*x^2]), x], x] - Simp[2*(c/q)   Int[1/((b + q + 2*c*x)*Sqrt[d + 
 f*x^2]), x], x]] /; FreeQ[{a, b, c, d, f}, x] && NeQ[b^2 - 4*a*c, 0] && Po 
sQ[b^2 - 4*a*c]
 
3.1.67.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(588\) vs. \(2(232)=464\).

Time = 0.63 (sec) , antiderivative size = 589, normalized size of antiderivative = 2.21

method result size
default \(\frac {\sqrt {2}\, \ln \left (\frac {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}-\frac {c \left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {\sqrt {2}\, \sqrt {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}\, \sqrt {4 {\left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}^{2} c -\frac {4 c \left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {2 \sqrt {-4 d f +e^{2}}\, c e +4 a \,f^{2}-4 c d f +2 c \,e^{2}}{f^{2}}}}{2}}{x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{\sqrt {-4 d f +e^{2}}\, \sqrt {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}}-\frac {\sqrt {2}\, \ln \left (\frac {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}-\frac {c \left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {\sqrt {2}\, \sqrt {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}\, \sqrt {4 {\left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}^{2} c -\frac {4 c \left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {-2 \sqrt {-4 d f +e^{2}}\, c e +4 a \,f^{2}-4 c d f +2 c \,e^{2}}{f^{2}}}}{2}}{x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{\sqrt {-4 d f +e^{2}}\, \sqrt {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}}\) \(589\)

input
int(1/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/(-4*d*f+e^2)^(1/2)*2^(1/2)/(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^ 
2)/f^2)^(1/2)*ln((((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e+ 
(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*(((-4*d 
*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e 
^2)^(1/2))/f)^2*c-4*c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2 
))/f)+2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x+1/2* 
(e+(-4*d*f+e^2)^(1/2))/f))-1/(-4*d*f+e^2)^(1/2)*2^(1/2)/((-(-4*d*f+e^2)^(1 
/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*c*e+2*a 
*f^2-2*c*d*f+c*e^2)/f^2-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^ 
2)^(1/2)))+1/2*2^(1/2)*((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^ 
2)^(1/2)*(4*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2*c-4*c*(e-(-4*d*f+e^2)^(1/2 
))/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2- 
2*c*d*f+c*e^2)/f^2)^(1/2))/(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2))))
 
3.1.67.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 5073 vs. \(2 (230) = 460\).

Time = 1.03 (sec) , antiderivative size = 5073, normalized size of antiderivative = 19.07 \[ \int \frac {1}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\text {Too large to display} \]

input
integrate(1/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="fricas")
 
output
Too large to include
 
3.1.67.6 Sympy [F]

\[ \int \frac {1}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\int \frac {1}{\sqrt {a + c x^{2}} \left (d + e x + f x^{2}\right )}\, dx \]

input
integrate(1/(f*x**2+e*x+d)/(c*x**2+a)**(1/2),x)
 
output
Integral(1/(sqrt(a + c*x**2)*(d + e*x + f*x**2)), x)
 
3.1.67.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\text {Exception raised: ValueError} \]

input
integrate(1/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*d*f-e^2>0)', see `assume?` for 
 more deta
 
3.1.67.8 Giac [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\text {Timed out} \]

input
integrate(1/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="giac")
 
output
Timed out
 
3.1.67.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\int \frac {1}{\sqrt {c\,x^2+a}\,\left (f\,x^2+e\,x+d\right )} \,d x \]

input
int(1/((a + c*x^2)^(1/2)*(d + e*x + f*x^2)),x)
 
output
int(1/((a + c*x^2)^(1/2)*(d + e*x + f*x^2)), x)